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West Germany 

Received 16 December 1985 

Abstract. The classical limit n >> 0 is investigated for a two-level system coupled to a boson 
mode. The usual formulations are found to neglect a shift h 2  of the spectrum where A is 
the strength of the coupling. A scaling law for the highly excited energy levels is derived 
and tested numerically. An insight is obtained into the characteristic properties of the 
energy level distribution which is of interest in connection with possible ‘quantum chaotic’ 
behaviour. The interpretation of the asymptotically effective Hamiltonian as a one- 
dimensional tight-binding model for the two-band Stark ladder is discussed. 

1. Introduction 

The Hamiltonian of a two-level system coupled to a boson mode is 

H = N + A ( U  + u + ) u ~  +tag,. (1.1) 

Here N = a+a and a, a+ are the usual annihilation and creation operators for bosons. 
The Pauli matrices ui describe the two-level systeril with the levels separated by A and 
A is the coupling constant. This Hamiltonian serves as a non-trivial model in spin 
resonance, quantum optics and for various problems in solid state physics (for a long 
list of references we refer to those cited by Reik er a1 (1982) and Graham and 
Hohnerbach (1984a)). Since it was found that its semiclassical counterpart shows 
chaotic motion (Zaslavsky 1981, Milonni et a1 1983) the system (1.1) now also serves 
as a model for the discussion of ‘quantum chaos’ (Graham and Hohnerbach 
1984a, b, c, KuS 1985a, Steeb et a1 1985). Because one of the criteria proposed for 
the discrimination between chaotic and non-chaotic quantum systems is based on 
statistical properties of the energy levels (Percivall973, Berry and Tabor 1977, Pechukas 
1983) the general structure of the spectrum in respect of the parameters A and A has 
attracted renewed interest. With the noteworthy exception of a set of exact isolated 
solutions discovered recently by Reik et a1 (1982) (see also KuS 1985b, KuS and 
Lewenstein 1986) the spectrum is not known in explicit analytic form. Instead, there 
a large number of approximations have been studied, valid in different regimes (for a 
review see Graham and Hohnerbach (1984a)). In addition, the spectrum has been 
investigated extensively by numerical methods (Reik et a1 1982, Graham and Hohner- 
bach 1984a, KuS 1985a, Steeb et a1 1985). 
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3566 M Schmutz 

In this paper we concentrate on the limit of large boson numbers n = ( N )  >> 0 which 
we call the large n limit. Because for given values of A and A all levels beyond a 
limited number of n fall into this regime we may expect to get an insight into various 
characteristic properties of the numerically calculated level distributions (Kus 1985a, 
Steeb et a1 1985) from the large n limit. 

This limit has been formulated in two versions which look very different at first 
sight. In one of these formulations the highly excited boson mode is treated as an 
oscillating classical field. By the use of Floquet’s theorem the explicitly time-dependent 
spin problem may be transformed into an eigenvalue problem. The properties of the 
corresponding Floquet Hamiltonian have been studied in great detail numerically and 
in various analytic approximations by Autler and Townes (1955). The second version 
of the large n limit is obtained directly from the Hamiltonian (1.1) when the n- 
dependent off -diagonal matrix elements resulting from the coupling term are replaced 
by the constant elements An;”. The equivalence of both versions was first pointed out 
by Shirley (1965). 

When applying the second formulation to the simple case A = O  we find that the 
resulting spectrum differs from the exact one by an n-independent shift given by A *  
which contradicts the claimed convergence of both spectra for n + CO ( 4  2).  We take 
this discrepancy as a reason to reconsider this limit. 

A more careful investigation indeed shows that the usual expressions for n >> 0 have 
to be corrected by a shift A’ (§ 3). The reason why this shift has escaped attention is 
probably due to the fact that it does not show up in time-dependent problems (e.g. 
transition probabilities). It is essential, however, when we are interested in the absolute 
energy levels. This finding shows that the large n limit is not entirely trivial, which 
we find to be caused by the approximation of the unbounded operators a and a+ by 
bounded ones. 

In § 4 we discuss the properties of the proper effective Hamiltonian for the highly 
excited states. This Hamiltonian has a number of simplifying symmetries giving rise 
to a ladder structure of the spectrum. As a consequence it follows that in the classical 
limit the spectrum of the two-level system obeys a scaling law ( §  5). For given A the 
highly excited levels even for varying A are all mapped by this law onto a single 
universal curve. Numerical tests show that the agreement with the asymptotic behaviour 
is remarkably good, even for small values of n. In combination with the knowri 
properties of the strong coupling limit we obtain a rather complete understanding of 
the level distribution, thus giving an explanation to the numerical results of KuS (1985a) 
and Steeb et a1 (1985). 

In 0 6 we point out that in the large n limit the effective Hamiltonian has an 
interesting interpretation as a one-dimensional tight-binding model for the two-band 
Stark ladder. In the basis of the Bloch wavefunctions the eigenvalue problem turns 
out to be formally equivalent to the behaviour of a spin in an oscillating classical field. 
This formulation coincides with the first version of the large n limit, thus illuminating 
it from a different point of view. 

2. The large n limit 

The discussion of the Hamiltonian (1.1) is facilitated by performing first a unitary 
transformation which diagonalises H with respect to the spin variables (see Shore and 
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Sander 1973). The result is 

H = N +  A ( U  + a+)  + ; A R ~ ,  

where the operator 

R = ( - l ) N  

obeys 

R = R+= R-‘  (2.3) 

[ R ,  N]-=O [R,  a(+) ]+ = 0. (2.4) 

H = N + A ( a  + a +) +;A( - 1) N .  (2.5) 

Hence, it suffices to consider the purely bosonic Hamiltonian 

The spectrum of the original Hamiltonian (1.1) or (2.1) is given by the superposition 
of the spectra of (2.5) for the values A = *lAl. The unitary transformation of H (2.5) 
by means of R has the simple effect A + -A. Hence, with respect to the coupling we 
may restrict ourselves to the range A 3 0 .  For later comparison we recall 

[a, NI-  = a 

[a, U + ] _  = 1. 

[ N ,  a + ] -  = U +  

In order to make the N dependence of the coupling term more explicit we define the 
operator 

cc 
T = In)( n + 11. 

0 

In the basis of the occupation number states {In); n = 0 ,1 ,2 , .  . . } T  has constant off- 
diagonal matrix elements and obeys 

[ T ,  N I - =  T [ N ,  T + ] -  = T+ (2.9) 

T T + = 1  T+T=1-10)(01 [ T T’I- = lO)(Ol (2.10) 

(2.11) 

Then 

and the Hamiltonian (2 .5)  may be written as 

H =  N + A ( T N ” ~ +  N ” ~ T + ) S ; A ( - ~ ) ~ .  (2.13) 

At this point we want to make a remark on the numbering of the energy levels. 
From numerical calculations it is found that as a function of A the levels avoid crossings. 
Hence, for given A and A we may follow a particular level in a unique way backwards 
to the simple case A = O  where 

E ( n ,  A = O ,  A )  = n +fA(-l)“ n =o ,  1 , 2 , .  . . (2.14) 

with n being the eigenvalue of N. According to this rule we may use n as a quantum 
number for arbitrary values of A and A although N does not commute with H when 
A f 0. This convention for the denumeration of the levels is the most convenient one 
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for the general discussion of the large n limit. It is to be noted, however, that according 
to this rule E (  n, A, A) is no more a strictly monotone function of n for IAl> 1 because 
then for A = O  the two ladders formed by the levels (2.14) with even and odd n 
respectively have crossed each other at least once. This point has to be kept in mind 
when the nearest-neighbour spacing distribution function is discussed in the large n 
limit. For this reason we will switch later on to an equivalent but strictly monotone 
numbering of the levels. 

The usual formulation of the large n limit is based on the observation that in the 
vicinity of some large boson number no the variation of the off -diagonal matrix elements 
of H is only of order h/n;/’. From this behaviour it is suggested that the noth level 
is well approximated for n,>>0, no>> IAI, A’ by the corresponding level of the Hamil- 
tonian with constant off -diagonal matrix elements 

(2 .15)  Hm = N + An;”( T + T+) + l A ( - l ) N .  
It is assumed that in the limit no + CO the agreement becomes exact: 

lim [ E ( n o ,  A, A )  - Li,(n,, A, A)]  = 0. (2.16) 

As was observed by Graham and Hohnerbach (1984a) hardly any simplification is 
achieved by the approximation (2.15), neither with respect to the analytical structure 
nor for numerical calculations. To a large extent the difficulties stem from the boundary 
effects which mainly influence the low energy levels. Being interested in the limit 
n0+m we can avoid these effects by allowing n to take on negative values as well. 
Explicitly, consider the Hilbert space spanned by the basis {in)}  where n runs from 
minus infinity to infinity. Let 

no-m 

then the spectrum of the approximate Hamiltonian 
H ,  = 13 + An;”( T + T+)  + i A (  - 1) ’ 

becomes identical with that of H,, in the limit E++m a 
equivalent to 

lim [ E ( n o ,  A, A) - l?,(no, A, A)]  = 0. 
no-= 

(2.17) 

(2.18) 
d the relation (2.16) is 

(2.19) 

The great simplification achieved by this formulation is a consequence of the much 
simpler algebraic properties of the operators N, T and F+ when compared with those 
of N, T and T+ or N, a and a’. Whereas the analogue to (2.9) remains unchanged 

( 2.20 1, [T ,  NI-= T 

j y + = T + T = l  
T+ln) = In + 1) 

[N, T + ] _  = T+ 
we now have, instead of (2.10) and (2.11), 

[ T, T+]_ = 0 

Tln )  = ( n  - 1). 
We see from (2.21) that T is a unitary operator wherea 

(2.21) 
(2.22) 

T is not. Most important, T 
and F’ commute and may be treated like-C numbers in a function F (  T+).  Retaining 
all information on the large n limit we consider for these reasons mainly this latter 
formulation in the following. 

When compared with other approximations a peculiarity of the one under consider- 
ation is that with each energy level there is associated an individual effective Hamil- 
tonian. These differ merely in different values of the effective coupling 12 = Ani”. From 
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each of these Hamiltonians we then have to pick a particular level as the best 
approximation. 

We now turn to the question whether the large n limit defined in this way really 
obeys the relation (2.19) as is claimed. In order to get a first impression we consider 
the special case A = 0 which can be discussed in detail. Here, the original Hamiltonian 
(2.5) reduces to a displaced harmonic oscillator and 

(2.23) 

As will be shown in 0 3, the Hamiltonian H ,  may easily be diagonalised for A = 0. 
We find 

E,(n, A, A = O )  = n n = 0 , + 1 , + 2 , . .  . .  (2.24) 

Hence, in the common range n 2 0 the spectra differ by a n-independent shift A 2  which 
is in contradiction with the supposed asymptotic behaviour (2.19). From this result 
obtained for A = 0 we draw the general conclusion that R% does not describe the large 
n limit properly. We note that the corresponding discussion for H% leads to the same 
conclusion which shows explicitly that in the limit E + 03 it does not matter whether 
we work in the extended Hilbert space or not. 

E ( n, A,  A = 0) = n - A n = 0 , 1 , 2  , . . . .  

3. Renormalised effective Hamiltonian 

In order to find out the reason for this failure we return to the decisive step from H 
to H%. By construction, the approximation consists of the replacement of the 
unbounded operators TNli2 and NIr2T+ in the coupling term by the bounded operators 
nA12T and n;”T+. Hence, H differs from H ,  by an unbounded operator which 
represents a rather drastic perturbation. As is known from other examples (anharmonic 
oscillator, Stark effect) unbounded perturbations have to be treated with some care. 

We avoid in our case a direct discussion of this problem by transforming H first 
by means of the displacement operator 

D(A)  = exp[A(a’- a ) ]  DD’= 1. (3.1) 

H = I V - A ~ +  H ,  (3.2) 

(3.3) 

We obtain 

Hi =$AD(h)(-l)”D(A)+ 

= &AD( 2A )( - 1) 
where D, and hence HI are bounded operators. 

We now perform the large n limit in the matrix elements of D(A) .  Consider 

(3.4) 
where the L‘,) are the Laguerre polynomials. Using the asymptotic properties of these 
polynomials we find in the limit no >> 0, no >> A’ the approximate expression 

(3 .5 )  
where 

(no+ klD(A)lno+l)= [(n,+l)!/(n,+ k)!]’”Ak-’ e-’””L$:)(A2) 

(no+ klD(A)lno+ I )  = J k - , ( 2 h )  

A=A(no+1/2)”2 (3.6) 
and where the J ,  are the Bessel functions. By means of the RHS of (3.5) we may define 
an operator which incorporates all the approximations of the large n limit. We 
immediately switch to the extended Hilbert space by allowing k and 1 to take on 
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negative values as well. We thus define 

By means of the algebraic relations (2.21) one easily verifies 

With respect to the algebra generated by fi, T and F+ the operator D(A) plays a role 
very similar to that of D ( h )  for N, a and a+. In fact, D ( A )  is unitary and from (2.20) 
it follows 

D ( A )  = exp[A( F + -  F ) ] .  (3.8) 

D(A)ND(A)+= f i - ~ ( F +  T+). (3.9) 
On the other hand there is a marked difference in that 

[ F+J, D ] -  = 0. (3.10) 
Keeping in mind that A depends on we arrive at the effective Hamiltonian 

fi,,,, = N - +;AD(A)(-I) R D ( ~ ) +  (3.11) 
which is unitary equivalent to 

I-i, = N + A ( F + f + + ;A ( - 1 - A 2. (3.12) 
For n, >> 0 we have A = An;’’ and a comparison with (2.18) shows that the approxi- 

mate Hamiltonian (3.12) differs from the usual formulation (2.18) exactly by the shift 
A 2  which was found to be missing in (2.24). Combining this result with numerical 
tests for A # 0 presented in 0 4 we conclude that the renormalised Hamiltonian (3.12) 
is the correct formulation of the large n limit. In passing we note that fim reduces for 
A = 0 to a diagonal operator when (3.11) is used. 

Our discussion can be summarised as follows. Whereas the substitution a‘+’+ 
nA’2?.(+J done directly in H neglects a shift A 2 ,  the very same substitution done in the 
exponential (compare (3.1) with (3.8)) gives the proper large n limit. We remark that 
this rule has to be used with some care because f and f+ commute whereas a and 
a+ do not. For instance, we have the identities 

D ( A )  = exp(-1/2hz) exp(Aa+) exp(-ha) 
= exp(1/2A2) exp(-ha) exp(ha+). (3.13) 

Here the substitution a(+)  += n;’2 f(+’ gives different operators which also differ from 
B(A). The transition from D ( A )  to OCA) (3.8) is the only one which conserves unitarity. 

4. Spectrum of the effective Hamiltonian 

Further discussion is simplified by removing the term - A 2  from fi. For this purpose 
we shift all levels by the same amount in the opposite direction. Thus, we henceforth 
consider 

H = N + A ( u + u + ) + A ~ + ; A ( - ~ ) ”  (4.1) 
together with 

f i % = N + ~ ( f + F + ) + ; ~ ( - i ) ~  (4.2) 
where L4 = ) \ ( A ,  no) is given by (3.6). Now the energy levels for A = 0 which form the 
so-called baselines are independent of A or h and are equal to the integers. 
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Before we go on to discuss H in terms of the sequence of the effective Hamiltonians 
&, we ignore for the moment the meaning of A. We thus drop the index no and treat 
A and A as independent parameters. As was observed by Autler and Townes (1955) 
for the case of continued fraction expressions for the eigensolutions the Hamiltonian 
R has a number of symmetry properties which imply that the spectrum consists of 
two ladders with equal spacing which are shifted against each other with respect to A 
and A, In algebraic terms we have 

Next we define the unitary operator fi by 

pap2 = R + 2. 

irl n )  = I-n). 
Then 

- - *  
UHU'=-H+l  

where 
ir= f i ( - l y T  

From (4.3) and (4.5) it follows that for any leve 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
E there exist levels E + 2 m  and 

- E  + 2 m +  1 with m =0,  * l ,  * 2 , .  . . which form the two ladders mentioned above. 
The whole spectrum may be parametrised as 

E ( n ,  A, A) = n+;A(-l)" (4.7) 
A = A(A, A ) .  (4.8) 

We thus have obtained from the symmetries (4.3) and (4.5) the n dependence of 
the spectrum in explicit form. This result forms the basis for our further discussion 
of the large n limit of the two-level system. 

Because of the ladder structure the parametrisation (4.7) is not unique. Different 
choices merely mean that we label the levels in different ways. As in the case of H it 
is sufficient to choose a labelling for A = 0. The numbering in terms of the eigenvalues 
of which we used in the previous sections is obtained by the condition 

A(A = 0, A) = A. (4.9) 
Here E( n, A, A )  is a strictly monotone function of n only for ]AI<  1 .  As an alternative 
we now introduce the monotoriic numbering of the levels for all values of A. For this 
purpose we decompose +A into an integer part n, and the rest +Ao 

:A = n,+fAo IAol 6 1 .  (4.10) 
Correspondingly we write 

t i (  A, A )  = nA + :Ao( A, A )  
3,( ,i = 0, A )  = Ao. 

(4.11) 
(4.12) 

The spectrum is then given as 
E(v,.\, A ) =  .+$io('\, A)(- l )p+ni  (4.13) 

where we here use the greek letter v = 0, i l ,  1 2 ,  . . . in order to distinguish this labelling 
from the one by the n. Explicitly, the relationship between the two versions is given by 

v = v ( n )  = n + r 1 , ( - 1 ) ~  (4.14) 

n-2 n(v)= v - n , ( - l ) ' + " ~ .  (4.15) 

By construction, both numberings coincide for n ,  = 0. 
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Figure 1. Numerical test of the scaling law for the energy levels. Deviations AE of the 
energy levels from their corresponding baselines E ,  = U for A = l(n, = 0). Full curve: 
AE =fao against A for the effective Hamiltonian. Circles and crosses: A E  = fAo against 
the scaled coupling A = A ( U +; ) ' I 2  for the two-level system for the levels Y = 4 (circles) 
and U = 12 (crosses). 

Figure 2. The same as figure 1 for A = 3,  U = 5 (circles) and U = 17 (crosses). Because here 
n, = 1, the scaled coupling is A = A ( U - i ) ' 1 2 ,  
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We see from (4.13) that the spectrum of A is completely determined by the 
knowledge of the function iA0(A, A) which describes up to the sign the deviation of 
the levels from their corresponding baselines E ,  = v. 

Except for the trivial cases A = 0 and A = 0 the deviation fao is not known analyti- 
cally. The perturbative treatment of A is very instructive because the resulting 
expression shows many characteristic properties of the general case. Here we assume 
IAl<< 1 and, hence, nA = 0 and A = Ao.  We obtain 

$&(A, A) =fAJo(4A). (4.16) 

Explicit approximate solution for various regimes of A and A have been given by 
Autler and Townes (1955). Being interested in the overall behaviour of Ao(A, A )  we 
retreat to numerical calculations. In the basis { In ) }  the matrix representation of is 
tridiagonal. For the determination of A0(A, A) we only need to know a single eigenvalue. 
An isolated eigenvalue can be obtained very efficiently by use of the node theorem for 
the eigenvectors of tridiagonal matrices (for details see ch 2 of Lieb and Mattis (1966)). 
After a symmetric truncation at n = *mo we determine the eigenvalue next to E = 0 
for which the effects of the truncation are minimal. Avoiding in this way the diagonalisa- 
tion of the whole matrix we obtain Ao(A, A)  with sufficient accuracy from rather low 
dimensional approximations (typically mo 5 30). 

The full curves of figures 1 and 2 show numerical results for A = 1 and A = 3. We 
arrive at the following properties of Ao(A, A )  which we suppose to hold for arbitrary 
values of A: (i) lhol zs 1 for all A and A; (ii) as a function of A the deviations show an 
infinite number of oscillations which die out for A + CO; (iii) with increasing values of 
/AI the maxima of (A0(A,  A)l increase accompanied by a decrease of the damping rate, 
and (iv) for large values of A the zeros of the deviations become equally spaced. As 
a consequence of (i)  each level lies completely within a strip of half-width f centred 
around the corresponding baseline. 

5. Asymptotic scaling law for the energy levels and level distribution 

The spectrum of H(A = 0, A )  coincides with that of H ( A  = 0, A) for n 3 0. We therefore 
may introduce for the Hamiltonian H (4.1) the level numbering v well ordered with 
respect to the energy along the lines as was done for fi in the last section. As a 
result, the spectrum of H may be written as 

E ( v ,  A, A )  ;= V + $ A O ( V ,  A, A)(-l)"+"d 

Ao( v = In,/, A = 0, A )  = bo 

v 5 /n,l (5.1) 

(5.2) 
where n ,  and A. are defined by (4.10). Being interested in the large n limit which is 
equivalent to the large v limit we henceforth consider only the levels with v 3 /nAl. 
This restriction of the parametrisation (5.1) and of the expressions (4.14) and (4.15) 
for v( n) and n( v) is due to the existence of a well defined ground state where v = 0. 

According to numerical calculations (Reik et a1 1982, Graham and Hohnerbach 
1984a) the spectrum (5.1) has quite a complex structure. Nevertheless, it shows some 
characteristic features, for example as a function of A and v. When following an energy 
level from A = 0 to A = 00 one can distinguish three regimes. In the first one the level 
oscillates around its corresponding baseline E ,  = v. The number of these oscillations 
increases proportional to v stretching to higher values of A. The crossings with the 
baseline coincide with the exact solutions of Reik et a1 (1982). This regime is followed 
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by an approach to the baseline which is finally reached for A = W. For fixed values 
of A and A we always enter the oscillatory regime when v is increased to sufficiently 
large values. We therefore expect this regime to be related to the large n(v) limit. 

Some of the essential features of the levels are already present when A is treated 
as a perturbation. Assuming [AI << 1 which implies nA = 0 we obtain from (3.3) and (3.4) 

iAo( v, A, A) = $ A  e-2A2Lp)(4A2). (5.3) 

In the large v limit we conclude quite generally from the comparison of (5.1) and 
(4.13) the following scaling law: 

;Ao( v, A, A )  = $&,(A(A, v), A )  (5.4) 

where by the use of (3.6) and (4.14) the coupling of the effective Hamiltonian 8, is 
given by 

h ( h ,  V ) = A [ v + ; - n ~ ( - l ) ” ~ “ ~ ] ” * .  ( 5 . 5 )  

Hence, in the limit v + CO the deviations from the baselines fall for given A onto 
the universal curve iAo(A, A )  when the coupling is scaled according to the rule (5.5). 
Numerical tests of this scaling law are presented in figure 1 for A = 1 and in figure 2 
for A = 3. In the oscillatory regime of the levels the agreement with the asymptotic 
behaviour is remarkably good, even for low values of v. 

Let us now consider for given values of A and A the nearest-neighbour spacings 

PE,= E (  V +  1 ,  A, A )  - E ( v ,  A, A ) .  (5 .6)  

In the large U limit 

A E , =  l + & o ( A ~ ~ ’ * ,  A) ( - l )”+“~~+’  (5.7) 

where we have set .A( A,  v + 1) = A( A, v )  = Hence, for v -j CO the level distribution 
is quite regular. For consecutive values of v the spacings lie alternately on the two curves 

(5.8) 

Thus, the scaling law for the energy levels implies a scaling law for the nearest- 
neighbour spacing distribution. Suppose we choose a specific value for A. Then a 
comparison of (5.1) and (5.4) with (5.8) shows that following an energy level v by 
varying A gives the same information as the level distribution A E v  for fixed A. As long 
as the condition v >> A 2  is fulfilled we measure in both cases &(-4, A )  as a function of 
A. Furthermore, it follows under the same conditions that we obtain no new information 
when we consider different energy levels or the level distribution for different values 
of A. 

We make some additional remarks on the level distribution. For given A and A we 
always enter the large v limit when v >> A *  where the scaling law applies. Making us‘: 
of observations (i)-(iv) on the behaviour of i o ( A ,  A )  mentioned at the end of Q 4 we 
arrive at the following properties. For v + 00 the functions A, E ,  show damped oscilla- 
tions around the mean value AE = 1 with 0 s A*Eu c 2 and 1irnu-= A*Eu = 1. For small 
values of A the oscillations die out rather quickly. On the other hand, when A is large 
the damping is small and the functions A +  E ,  nearly approach the bounds A E  = 0 and 
A E  = 2 over many periods. In addition, it follows from (h) that the period of the 
oscillations roughly increases proportional to 

We obtain a coherent picture of A E ,  for all values of v when we take into account 
the behaviour of the levels in the strong coupling limit A‘ >> v where they have settled 

A*Eu = 1 *&o(Avl”, A ) .  

for increasing values of v. 
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down to the baselines E ,  = v. First assume A’ >> 1. Then the lowest levels fall into the 
regime of the strong coupling limit and A E ,  = 1. When v is increased to values of the 
order of A’ then AEv corresponds to levels which are approaching the baselines. Here 
A E ,  is found to be quite irregular. For Y >> A’ we finally enter the large v regime 
described above where A E ,  has split into the two functions A*E,.  In the opposite 
case A’<< 1 the distribution AEv directly begins with the irregular part. In any case, 
aside from a limited range, the distribution of the nearest-neighbour spacings is a quite 
regular function of v. 

These properties are in complete agreement with the numerical results obtained by 
KuS (1985a) (see also Steeb et al 1985). Because these properties form the basis for 
the conclusion of Ku6 (1985a) and Steeb et a1 (1985) that the spectrum of the two-level 
system indicates the non-existence of ‘quantum chaos’ we may say that our results 
provide an analytic support of this view. As was emphasised by KuS (1985a) however, 
this conclusion relies on a tentative definition of ‘quantum chaos’. Nevertheless, the 
rather complete understanding we have obtained of the characteristic properties of the 
level distribution renders the two-level system into a convenient model for the applica- 
tion of any criterion based on the sequence of eigenvalues indepedent of its eventual 
final form. 

6. Interpretation of the effective Hamiltonian as a tight-binding model for the 
two-band Stark ladder 

We add a few general remarks on the effective Hamiltonian (4.2). In the basis of the 
occupation number states H may be written as 

where 

E ( n )  = E o ( n ) + E , ( n f  (6.2) 

E O (  n) = $A( - 1)” ~ , ( n )  = n. (6.3) 
Written in the form (6.1) fi has the obvious interpretation as a one-dimensional 

tight-binding model with local energies ~ ( n )  and the hopping matrix element A. The 
contribution of n )  may be interpreted as the potential of a homogeneous electric field. 

In the absence of this field we face a system with period 2. The corresponding 
energy bands E:( k) and Bloch states I k, s) with s = i 1 are 

E:( k) = s[$A2+ (2.4 COS k)2]1’2 

I T - ” *  2 exp(ik2n)l2n) 

(6.4) 

fors  = +1 
- X  

lk, s) = +1 (6.5) 
[ T - ” ~  & exp[ik(2n + 1)]12n + 1) fors  = -1. 

The application of a homogeneous field to a system with s bands has the well 
known effect that all states become localised, reflected by a discrete spectrum consisting 
of s Stark ladders (Avron and Zak 1977) (see also Avron 1982). In our case the two 
Stark ladders are those described in 0 4. 
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With k from the first Brillouin zone [0, T ]  the Bloch states lk, s) form a complete 
set of states and for an arbitrary state we have 

with the boundary condition 

u,(7r) = su,(O). 

Introduce a two-component wavefunction 

then the time-independent Schrodinger equation becomes 

(iak+2,\cos k a x + ~ A a z ) u ( k ) =  h ( k )  

(6.7) 

supplemented by the boundary condition 

u(7r )  = a,u(O). (6.10) 

Now interpret the momentum k as the time t, then the eigenvalue equation (6.9) 

ia ,u(r)  = h ( t ) u ( t )  (6.11) 

h(  t )  = -2h COS tax -;AC, + E. (6.12) 

Recalling that in the large n limit h=An;” we see that (6.11) and (6.12) describe the 
dynamics of a two-level system in a strong oscillating field. Starting from the effective 
Hamiltonian fi we have thus arrived at the time-dependent formulation of the large 
n limit, as was considered in detail by Autler and Townes (19%) and Shirley (1965). 
Note, however, that fi refers to the Hamiltonian (4.1) which includes the shift A*.  

takes the form of a time-dependent Schrodinger equation 

7. Conclusion 

The final version of the effective Hamiltonian in the large n limit (4.2) differs from 
the original problem written in the form (4.1) in two ways. First, by working in the 
extended Hilbert space we get rid of the irrelevant boundary effects which affect only 
the low lying levels. Second, the transition from the Bose operators a, a’ to the 
commuting operators 7, F+ gives rise to an appreciable simplification which is reflected 
by a number of symmetry properties. The scaling law for the highly excited levels, 
together with its implications for the level distribution, is a direct consequence thereof. 
On the other hand, the transition to commuting operators introduces an operator 
ordering problem which is not without subtleties, as was pointed out at the end of § 3. 
We note that the ‘C number properties’ of t and 7’ are intimately related to the fact 
that they are unitary and, hence, bounded operators. This indicates once more that 
the failure of the usual formulation of the large n limit results from an improper 
approximation of the unbounded Bose operators by bounded ones. We have avoided 
this problem by means of a unitary transformation. 

The content of § 6 may be summarised as follows: the large n limit of a two-level 
system coupled to a boson mode, the dynamics of a spin in a strong oscillating field 
and the two-band Stark effect are equivalent formulations of one and the same problem. 
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